

Введение в АД

Лекция 3

Машинное обучение

Ô

Искусственный интеллект (AI)

общее направление в компьютерных науках, включает все методы и технологии, для имитации человеческий интеллект.

Машинное обучение (ML)

один из подходов к технологической реализации АІ.

Обучение с учителем (Supervised learning)

раздел ML, в котором модели обучаются на размеченных данных.

Блок занятий по ML в курсе ВвАД

- 1. Линейные модели (сегодня)
- 2. Нейронные сети
- 3. Компьютерное зрение (CV)
- 4. Обработка естественного языка (NLP)
- 5. Кластеризация (обучение без учителя)

Обучение с учителем

C

 $X_1, ..., X_n$ — объекты из множества \mathscr{X} $Y_1, ..., Y_n$ — таргеты из множества \mathscr{Y}

Требуется подобрать функцию $y:\mathscr{X}\to\mathscr{Y}$, приближающую исходную зависимость.

Обучение с учителем

 $X_1,...,X_n$ — объекты из множества ${\mathscr X}$

 $Y_1,...,Y_n$ — таргеты из множества ${\mathscr Y}$

Регрессия

 $\mathscr{Y}-\mathbb{R}$, \mathbb{R}_+ или интервал в \mathbb{R} ,

Примеры регрессии

- Прогнозирование спроса предсказание количества проданных товаров в следующем месяце.
- Предсказание уровня сахара в крови – моделирование изменений глюкозы у диабетиков в зависимости от питания и активности.

Классификация

 \mathscr{Y} — конечное множество

Примеры классификации

- ▶ Распознавание спама определение, является ли письмо спамом или нет.
- Диагностика заболеваний определение наличия или отсутствия болезни по снимкам МРТ
- ► Анализ тональности текста определение, является ли отзыв положительным

Линейная регрессия

МОЁ ХОББИ: ЭКСТРАПОЛИРОВАТЬ

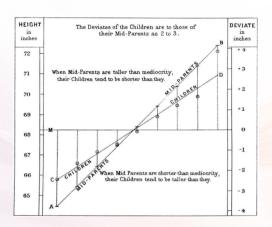
9

Первое упоминание регрессии

Впервые регрессия упоминается в работе Гальтона "Регрессия к середине в наследственности роста", 1885 г.

Пусть x — рост родителей, y — рост детей.

Установлена зависимость $y-\overline{y}pprox rac{2}{3}(x-\overline{x})$, т.е. регрессия к середине.



Модель линейной регрессии

Пусть $\mathscr{X}\subset\mathbb{R}^d$ — множество признаков, $\mathscr{Y}=\mathbb{R}$ — таргеты.

Рассматриваем зависимость вида

$$y(x) = \theta_1 x_1 + \dots + \theta_d x_d,$$

где $x_1,...,x_d$ — признаки, $heta=(heta_1,..., heta_d)^T$ — вектор параметров.

Простой пример

 $y = \theta_0 + \theta_1 x$

x — рост котика,

y — потребление еды,

 θ_0, θ_1 — неизвестные параметры.

Зависимость

- линейна по параметрам,
- линейна по аргументу.

Более сложный пример

 $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_2^2,$

 x_1 — рост котика,

 x_2 — вес котика,

y — потребление еды,

 $\theta_0, \theta_1, \theta_2, \theta_3$ — неизвестные параметры.

Зависимость

- линейна по параметрам,
- квадратична по аргументам.

Нелинейные признаки

Зависимость y = y(x) должна быть линейна по параметрам, но не обязана быть линейной по признакам.

Пусть $z_1,...,z_k$ — набор "независимых" переменных. Можно рассматривать модель $y(x)=\theta_1x_1(z_1,...,z_k)+...+\theta_dx_d(z_1,...,z_k)$, где $x_j(z_1,...,z_k)$ — некоторые функции, м.б. нелинейные.

Примеры: $x(z_1,...,z_k) = 1$, $x(z_1,...,z_k) = z_1$, $x(z_1,...,z_k) = z_1^2 \ln z_2$.

Матричная запись

Представим данные в матричном виде

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}.$$

Линейная регрессия предполагает зависимость $Y = X\theta$.

Пример: Потребление мороженого

9

Предполагается линейная зависимость потребления мороженого в литрах на человека от среднесуточной температуры воздуха: $ic = \theta_0 + \theta_1 t$.

В этом примере $x_0(t) = 1$, $x_1(t) = t$,

$$X = \begin{pmatrix} 1 & t_1 \\ \dots & \\ 1 & t_n \end{pmatrix}, Y = \begin{pmatrix} IC_1 \\ \dots \\ IC_n \end{pmatrix}, \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \end{pmatrix}.$$

Пусть $w = I\{$ выходной день $\}$, зависимость $ic = \theta_0 + \theta_1 t + \theta_2 t^2 w$. В этом примере $x_0(t,w) = 1$, $x_1(t,w) = t$, $x_2(t,w) = t^2 w$,

$$X = \begin{pmatrix} 1 & t_1 & t_1^2 w_1 \\ \dots & & \\ 1 & t_n & t_n^2 w_n \end{pmatrix}, Y = \begin{pmatrix} IC_1 \\ \dots \\ IC_n \end{pmatrix}, \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix}.$$

Материал по доске

Ô

Отступление в матричное дифференцирование

Пусть $f:\mathbb{R}^n o \mathbb{R}$. Тогда

$$\frac{\partial f}{\partial x} = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \dots & \frac{\partial f}{\partial x_n} \end{pmatrix}$$
 — производная (вектор-строка)

$$abla f = egin{pmatrix} rac{\partial f}{\partial x_1} \ ... \ rac{\partial f}{\partial x_n} \end{pmatrix}$$
 — градиент (вектор-столбец).

Пример 1

$$f(x) = a^T x$$
, где $a, x \in \mathbb{R}^n$

$$\frac{\partial f}{\partial x} = a^T -$$
производная

$$\nabla f = a$$
 — градиент

Пример 2

$$f(x) = x^T A x$$
, где $x \in \mathbb{R}^n$,
матрица $A \in \mathbb{R}^{n \times n}$ симметрична

$$\frac{\partial f}{\partial x} = 2x^T A - \text{производная}$$

$$\nabla f = 2Ax$$
 — градиент

Пример

	J	ø	•
1	1		١
	ľ	7	7
	1	٦	-

Д	_				_
,,	а	н	н	ы	Р

X	0	1	2
у	0	4	7

Модель
$$y(x) = \theta_0 + \theta_1 x$$

Найдите оценку коэффициентов.

Решение

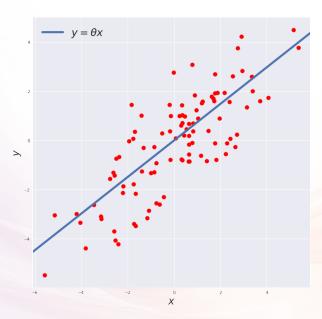
Матричный вид:
$$X=egin{pmatrix}1&0\\1&1\\1&2\end{pmatrix}$$
, $Y=egin{pmatrix}0\\4\\7\end{pmatrix}$, $heta=egin{pmatrix}\theta_0\\\theta_1\end{pmatrix}$.

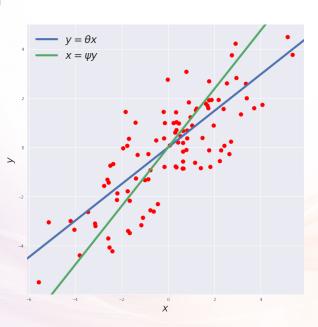
Оценка коэффициентов
$$\widehat{\theta} = \left(X^T X\right)^{-1} X^T Y = \begin{pmatrix} 1/6 \\ 21/6 \end{pmatrix}$$

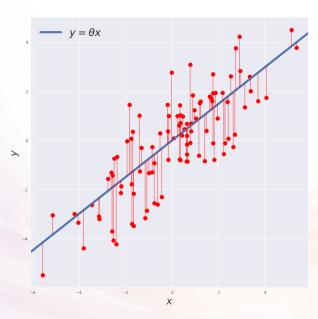
Обученная модель

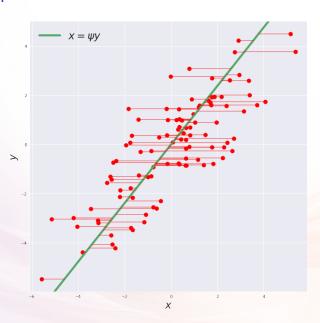
$$y(x) = \frac{1}{6} + \frac{21}{6}x$$

Материал по доске









Задача классификации

Ô

Классификация

 \mathscr{X} — пространство объектов, \mathscr{Y} — конечное множество классов. Правило классификации: $y:\mathscr{X}\to\mathscr{Y}$.

Пространство $\mathscr X$ разбивается на подпространства (decision regions) $\mathscr X_k=\{x\in\mathscr X\mid y(x)=k\}$, границы которых называются разделяющими поверхностями (decision surfaces).

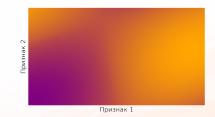
Вероятностная природа

Часто предполагается случайная принадлежность к классу: при повторении эксперимента один и тот же объект $x \in \mathscr{X}$ может быть отнесен как одному классу, так и к другому.

 \implies имеет смысл предсказывать вероятность $P_x(Y=k)$ принадлежности объекта x каждому из классов.

Точечная оценка: $\underset{k \in \mathscr{Y}}{\operatorname{arg max}} P_x(Y = k)$

Если классы неравнозначны: $\underset{k \in \mathscr{Y}}{\operatorname{arg max}} [w_k \, \mathsf{P}_x (Y=k)],$ $w_k - \mathsf{n}$ приоритетность класса



Примеры:

- 1. $P(Y = 0 \mid X = x_2) = 0.95$, $P(Y = 1 \mid X = x_2) = 0.05$ уверенное предсказание в пользу класса 0
- 2. $P(Y = 0 \mid X = x_1) = 0.55$, $P(Y = 1 \mid X = x_1) = 0.45$ модель не уверена в предсказании.

9

Линейные модели

 $y(x) = \theta^T x$ — линейная модель регрессии.

Модель классификации называется линейной если разделяющая поверхность — линейная гиперплоскость в пр-ве \mathscr{X} . В многоклассовом случае — при дополнении до гиперплоскости. Пример: при $\mathscr{Y}=\{0,1\}$ линейна модель $y(x)=\mathrm{sign}(\theta^Tx)$.

Замечание.

Исходное пространство признаков может быть предварительно преобразовано с помощью нелинейных функций, в частности можно включить константный признак. В таком случае разделяющая поверхность линейного классификатора не будет линейной в исходном пространстве.

Логистическая регрессия

Материал по доске

Отступление в теорию информации

Кодирование

```
Алфавит: {A, B, C}
```

Как его закодировать с помощью 0 и 1?

Правило кодирования:

 $\begin{array}{ccc} \textbf{A} & \longrightarrow & 00 \\ \textbf{B} & \longrightarrow & \textbf{01} \\ \textbf{C} & \longrightarrow & \textbf{10} \end{array}$

Дано сообщение:

AAAAAAABABCBABAAABBAABAAAA

Закодированное сообщение:

Длина символа: 2

Алфавит: **{A**, **B**, **C**}

Известны вероятности появления символов: $\{0.7,\,0.2,\,0.1\}$

Хочется уменьшить длину закодированного сообщения.

Алфавит: **{A**, **B**, **C**}

Известны вероятности появления символов: $\{0.7,\ 0.2,\ 0.1\}$

Хочется уменьшить длину закодированного сообщения.

Алфавит: {A, B, C}

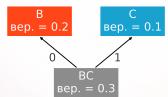
Известны вероятности появления символов: {0.7, 0.2, 0.1}

Хочется уменьшить длину закодированного сообщения.

Алфавит: **{A**, **B**, **C**}

Известны вероятности появления символов: $\{0.7,\,0.2,\,0.1\}$

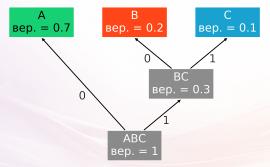
Хочется уменьшить длину закодированного сообщения.



Алфавит: **{A**, **B**, **C**}

Известны вероятности появления символов: $\{0.7,\,0.2,\,0.1\}$

Хочется уменьшить длину закодированного сообщения.

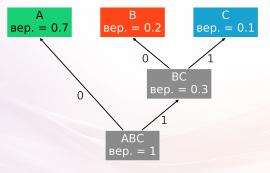


Алфавит: {**A**, **B**, **C**}

Известны вероятности появления символов: $\{0.7, 0.2, 0.1\}$

Хочется уменьшить длину закодированного сообщения.

Метод построения оптимального кода (Хаффман):



Правило кодирования:

$$A \longrightarrow 0$$

$$\mathsf{B} \longrightarrow \mathsf{10}$$

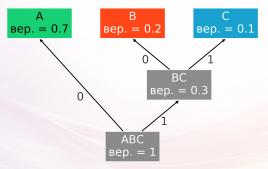
$$\mathbf{C} \longrightarrow \mathbf{1}$$

Алфавит: **{A**, **B**, **C**}

Известны вероятности появления символов: $\{0.7, 0.2, 0.1\}$

Хочется уменьшить длину закодированного сообщения.

Метод построения оптимального кода (Хаффман):



Правило кодирования:

 $egin{array}{cccc} \mathsf{A} & \longrightarrow & \mathsf{0} \\ \mathsf{B} & \longrightarrow & \mathsf{10} \\ \mathsf{C} & \longrightarrow & \mathsf{11} \end{array}$

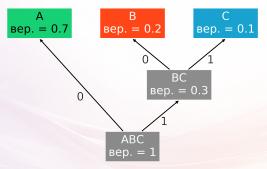
Декод-ние однозначно, т.к. ни один код не является префиксом другого.

Алфавит: {**A**, **B**, **C**}

Известны вероятности появления символов: $\{0.7, 0.2, 0.1\}$

Хочется уменьшить длину закодированного сообщения.

Метод построения оптимального кода (Хаффман):



Правило кодирования:

 $egin{array}{lll} \mathsf{A} & \longrightarrow & \mathsf{0} \\ \mathsf{B} & \longrightarrow & \mathsf{10} \\ \mathsf{C} & \longrightarrow & \mathsf{11} \\ \end{array}$

Декод-ние однозначно, т.к. ни один код не является префиксом другого.

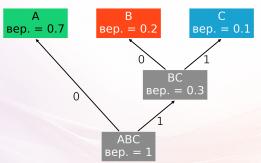
Средняя длина символа:

Алфавит: {A, B, C}

Известны вероятности появления символов: $\{0.7, 0.2, 0.1\}$

Хочется уменьшить длину закодированного сообщения.

Метод построения оптимального кода (Хаффман):



Правило кодирования:

 $egin{array}{cccc} \mathsf{A} & \longrightarrow & \mathsf{0} \\ \mathsf{B} & \longrightarrow & \mathsf{10} \\ \mathsf{C} & \longrightarrow & \mathsf{11} \\ \end{array}$

Декод-ние однозначно, т.к. ни один код не является префиксом другого.

Средняя длина символа: $0.7 \cdot 1 + 0.2 \cdot 2 + 0.1 \cdot 2 = 1.3$

Пример

Исходное сообщение

AAAAAAABABCBABAAABBAABAAAA

Первое кодирование

Количество символов: 100; Длина символа: 2

Код Хаффмана

Правило кодирования:

 $A \longrightarrow 0$

 $B \rightarrow 10$

 $C \rightarrow 11$

Закодированное сообщение:

Количество символов: 63; Средняя длина символа: 1.3

Средняя длина символа

Утверждение:

Для кодирования символа, встречающегося с вероятностью p_j в "идеале" нужно $\log_2 \frac{1}{p_i}$ бит. Приближение — коды Хаффмана.

Пример:

Символы равновероятны \Rightarrow для каждого символа нужно $\lceil \log_2 k \rceil$ бит.

Пусть символы $a_1,...,a_k$ встречаются с вер-тями $p_1,...,p_k$.

Энтропия — средняя длина символа при оптимальном кодировании.

$$H(\mathsf{P}) = -\sum_{j=1}^{\kappa} p_j \log_2 p_j$$

В нашем примере для вероятностей $\{0.7, 0.2, 0.1\}$ $H(P) = -0.7 \log_2 0.7 - 0.2 \log_2 0.2 - 0.1 \log_2 0.1 \approx 1.157$ А мы построили код со средней длинной символа 1.3.

Кодирование с помощью другого распределения

```
Что будет, если будем кодировать кодом, построенным по распр. Q = \{q_1,...,q_k\}, если истинное распр. P = \{p_1,...,p_k\}?
```

```
Алфавит: {A, B, C}
```

Истинные вероятности появления символов: $P = \{0.7, 0.2, 0.1\}$

Предполагаемые вер-ти появления символов: Q = $\{0.4,\,0.5,\,0.1\}$

Правило кодирования для Q:

 $A \longrightarrow 10$

 $\mathbf{B} \longrightarrow \mathbf{0}$

 $C \longrightarrow 11$

Закодированное сообщение:

Количество символов: 91

Средняя длина символа: $0.7 \cdot 2 + 0.2 \cdot 1 + 0.1 \cdot 2 = 1.8$

Кодирование с помощью другого распределения

Что будет, если будем кодировать кодом, построенным по распр. $Q = \{q_1,...,q_k\}$, если истинное распр. $P = \{p_1,...,p_k\}$?

Кросс-энтропия — средняя длина символа при кодировании алфавита вероятностями появления символов Q, если на самом деле они появляются с вероятностями P.

$$H(P,Q) = -\sum_{j=1}^{k} p_j \log_2 q_j$$

Дивергенция Кульбака-Лейблера — избыточная длина символа при кодировании алфавита вероятностями появления символов Q, если на самом деле они появляются с вероятностями P.

$$KL(P,Q) = H(P,Q) - H(P) = \sum_{j=1}^{k} p_j \log_2 \frac{p_j}{q_j}$$

Кодирование с помощью другого распределения

Алфавит: $\{A, B, C\}$ Истинные вероятности появления символов: $P = \{0.7, 0.2, 0.1\}$ Предполагаемые вер-ти появления символов: $Q = \{0.4, 0.5, 0.1\}$

$$H(\mathsf{P}) = -0.7\log_2 0.7 - 0.2\log_2 0.2 - 0.1\log_2 0.1 \approx 1.157$$
 $H(\mathsf{P},\mathsf{Q}) = -0.7\log_2 0.4 - 0.2\log_2 0.5 - 0.1\log_2 0.1 \approx 1.458$ $\mathit{KL}(\mathsf{P},\mathsf{Q}) = \mathit{H}(\mathsf{P},\mathsf{Q}) - \mathit{H}(\mathsf{P}) \approx 1.458 - 1.157 = 0.301$ В теории мы тратим лишние 0.3 бита на символ.

Для приближающих кодов Хаффмана:

- Средняя длина символа при кодировании по Р: 1.3
- ► Средняя длина символа при кодировании по Q: 1.8
- Избыточная длина символа: 0.5

BCE!