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Structure‑based design 
and classifications of small 
molecules regulating the circadian 
rhythm period
Seref Gul1, Fatih Rahim2, Safak Isin3, Fatma Yilmaz4, Nuri Ozturk4, Metin Turkay2* & 
Ibrahim Halil Kavakli1,3*

Circadian rhythm is an important mechanism that controls behavior and biochemical events based on 
24 h rhythmicity. Ample evidence indicates disturbance of this mechanism is associated with different 
diseases such as cancer, mood disorders, and familial delayed phase sleep disorder. Therefore, drug 
discovery studies have been initiated using high throughput screening. Recently the crystal structures 
of core clock proteins (CLOCK/BMAL1, Cryptochromes (CRY), Periods), responsible for generating 
circadian rhythm, have been solved. Availability of structures makes amenable core clock proteins 
to design molecules regulating their activity by using in silico approaches. In addition to that, the 
implementation of classification features of molecules based on their toxicity and activity will improve 
the accuracy of the drug discovery process. Here, we identified 171 molecules that target functional 
domains of a core clock protein, CRY1, using structure-based drug design methods. We experimentally 
determined that 115 molecules were nontoxic, and 21 molecules significantly lengthened the period 
of circadian rhythm in U2OS cells. We then performed a machine learning study to classify these 
molecules for identifying features that make them toxic and lengthen the circadian period. Decision 
tree classifiers (DTC) identified 13 molecular descriptors, which predict the toxicity of molecules 
with a mean accuracy of 79.53% using tenfold cross-validation. Gradient boosting classifiers (XGBC) 
identified 10 molecular descriptors that predict and increase in the circadian period length with a mean 
accuracy of 86.56% with tenfold cross-validation. Our results suggested that these features can be 
used in QSAR studies to design novel nontoxic molecules that exhibit period lengthening activity.

The circadian clock is a biochemical oscillator that modulates several physiologic functions such as alertness, 
memory, heart rate, blood pressure, and immune responses through periodic transcriptional regulation1–5. 
Additionally, genetic and epidemiologic studies have linked clock disruption with various adverse metabolic 
phenotypes6, sleep7 and mood disorders8.

At the molecular level, four core clock proteins are required to generate circadian rhythm, which are BMAL1, 
CLOCK, CRYPTOCHROMEs (CRYs), and PERIODs (PERs). Among these BMAL1 and CLOCK form heterodi-
mer and bind E-box on DNA (CAC​GTG​) and in turn, initiate transcription of clock-controlled genes (CCGs) 
including Pers and Crys9–11. Then, PERs and CRYs accumulate in the cytosol and form a trimeric complex 
with casein kinase Iε/δ (CKI) and then translocate into the nucleus. Trimeric complex interacts with BMAL1/
CLOCK and inhibits transcription of CCGs12. Period determination in the mammalian circadian clock involves 
the turnover rate of the CRY and PER via post-translational modifications. FBXL3 and FBXL21 mediate the 
degradation of CRY proteins13,14. A recent next-generation RNA sequencing analysis indicated that 10% of all 
genes and 43% of all protein-coding genes are under the control of the circadian clock in at least one tissue15.

Several diseases are associated with disruption of circadian rhythm at genetic level16–20. Studies show a broad 
role for the clock in normal physiology and its role in mediating pathophysiological conditions. The importance 
of a robust circadian clock for health is increasingly recognized, and therefore, the identification of molecules 
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that modulate circadian clocks became a hot topic21–28. High-throughput screening is currently instrumental for 
identifying the molecules that affect the circadian clock.

Structure-based drug discovery methods have advantageous in terms of saving time and reducing cost. The 
addition of classification methods to the drug discovery pipeline will eliminate inappropriate molecules such as 
toxic and inactive. The feasibility of such implementation between them is shown in quantitative structure–activ-
ity relationships (QSAR) models for many targets29–37. Given the importance of circadian rhythm in human 
health, with the recent reports of resolved crystal structures of core clock proteins and their interacting partners 
(CRY-FBXL3 (pdbID: 4K0R)38, BMAL1-CLOCK (pdbID:4F3L)39, and CRY-PER (pdbID:4U8H)40, now it is pos-
sible to perform in silico screening to find small molecules targeting core clock proteins. A recent study reports 
the discovery of a molecule that regulates CLOCK and BMAL1 interaction using the structure-based approach22.

In this study, we performed in silico screening using CRY1 crystal structure (ID: 4K0R) to find molecules that 
regulate circadian rhythm in U2OS cell line. We experimentally tested 171 molecules in terms of toxicity and 
activity. The 56 molecules were found to be toxic, and 115 molecules were nontoxic to the cell, and 22 molecules 
significantly lengthened the period of the circadian rhythm. To identify molecular features, using machine learn-
ing, we used 171 molecules and our result showed that 11 features among the available 1538 were the best to 
predict the toxicity of the molecules. Similarly, we determined 10 molecular descriptors that explain the period 
change in circadian rhythm. Our results suggest that these molecular descriptors can be used in QSAR studies 
for the identification of nontoxic and circadian period lengthener molecules using big libraries that can be used 
in various CRY1 related disorders.

Material and methods
Molecular dynamics simulation.  Mouse-CRY1 (mCRY1) (PDB ID: 4K0R) which is 93% identical to 
human CRY1 protein was retrieved from the protein databank. The structure was solvated in a rectangular box 
with TIP3P water molecules with the size of 7.25 × 105Å3 and neutralized with counterions using the NAMD 
(v. 2.6)41 program packages. Then the system was minimized using the conjugate gradient method and kept 
the backbone atoms of the protein frozen. Then further minimization steps with relaxed backbone atoms were 
carried out. The system was heated up to physiological temperature with 10 K increments by running 10 ps 
simulation at each temperature. Constraints were applied during 1.4 ns equilibration simulation where the initial 
force constant on the Cα atoms of the protein was 2 kcal/mol/Å2 and reduced by 0.5 kcal/mol/Å2 for each 0.4 ns 
equilibration run. CHARMM-PARAM22 force field42 was used for the molecular dynamics (MD) simulations. 
After the equilibration of the system, MD simulation was run at 3100 K for 10 ns. The pressure was controlled by 
the Langevin piston method during the simulations. The timestep was set to 2 fs and the bonded interactions, 
the van der Waals interactions (12  Å cutoff), long-range electrostatic interactions with particle-mesh Ewald 
(PME) were included for calculating the total force acting on the system. The last frame of the simulation was 
used as the “receptor” for the docking simulations. RMSD values were obtained using the RMSD trajectory tool 
of VMD. Backbone atoms (C, CA, N, and O) of each residue were used for RMSD calculation by excluding the 
translational motions.

Molecular docking simulations.  More than 8 million small molecules with non-identified functions were 
used as ligands for the docking. Molecules having the following criteria were filtered to eliminate non-relevant 
molecules: molecules having more than 7 H-bond donors, more than 12 H-bond acceptors, more than 600 Da 
molecular weight, logP > 7, more than 8 rotatable bonds, less than 3 aromatic rings43, and less than total of 4 
rings. Openbabel, Autodock4.2, Autodock Tools444 and Autodock Vina45 programs were utilized to prepare 
ligands (small molecules) for the docking. Finally, more than 1million compounds were docked to target pock-
ets by using the Autodock Vina program. The target pocket for FAD and FBXL3 binding site was determined 
based on the CRY-FBXL3 crystal structure38. The target pocket on CRY1 was constructed via Autodock Tools. 
The Center of the box was located on the side chain of Phe296 amino acid residue, and the grid box size was 
determined as 1.9 × 104 Å3. Another target pocket was the secondary pocket of CRY1. The Center of the box 
was located on the side chain of Lys11 amino acid residue, and the grid box size was determined as 2.7 × 104 Å3.

The binding energy of molecules to CRY1 was calculated by Autodock Vina which uses a novel scoring func-
tion combining the knowledge-based and empirical approaches.

 ΔGvdw: 12–6 Lennard–Jones potential function; ΔGelect: Coulombic with Solmajer-dielectric function; ΔGhbond: 
12–10 Potential with Goodford Directionality; ΔGdesolv: Stouten Pairwise Atomic Solvation Parameters; ΔGtors: 
Number of rotatable bonds.

Autodock Tools4 or PyMol (http://​pymol.​sourc​eforge.​net/) software were used to visualize the docking results 
and protein structure, respectively.

MTT toxicity assay.  Human osteosarcoma U2OS cell lines were used for the cytotoxicity assay. Cells were 
cultured and passaged at 37 °C under 5% CO2 in 1X medium (filtered DMEM, 10% FBS, 100 μg/ml streptomy-
cin, and 100 μg/ml penicillin and 2 mM L-Glutamine). Cells were seeded in triplicate to clear 96-well plates with 
4000 cells/well then grown for 48 h. Cells were treated with molecules at desired concentrations (final DMSO 
concentration 0.5%) in DMEM and incubated for 48 h. Cell viability was measured by adding tetrazolium dye 
3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) which is converted to insoluble purple 
color formazan because of the mitochondrial activity. Cells were incubated with MTT reagent for 4 h and then 
the medium was replaced with DMSO:EtOH (50:50) mixture. Purple salt was dissolved, and the absorbance of 

�Gbinding = �Gvdw + �Gelect + �Ghbond + �Gdesolv + �Gtors

http://pymol.sourceforge.net/
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wells was measured at 570 nm by the spectrophotometer. As a negative control, cells treated with 5% final DMSO 
concentration (known as toxic to cells). In each experiment 3-technical replicates were done.

Real time bioluminescence monitoring.  5 × 104 U2OS Bmal1-dLuc cells per well were seeded to an 
opaque 96-well plate and cultured overnight as described earlier46. The next day cells were reset by adding dexa-
methasone (DXM) (0.1  µM final) for 2  h. Then medium was changed to bioluminescence recording media 
which contains the following in 1L: DMEM powder (sigma D-2902, 10X 1L), 0.35 gr sodium bi-carbonate (tis-
sue culture grade, sigma S5761), 3.5gr D(+) glucose powder (tissue culture grade, sigma G7021), 10 mL 1 M 
HEPES buffer (Gibco 15,140–122), 2.5 mL Pen/Strep (100 ug/ml), 50 mL 5% FBS and up to 1L sterile milliQ 
water. Luciferin is added freshly with 0.1 mM final concentration. Molecules were added to the bioluminescence 
recording media at the desired concentration (0.5% DMSO final concentration). Plates were sealed with opti-
cally clear film to prevent evaporation and gas exchange thereby maintaining homeostasis of the cells. Lumines-
cence values were recorded at 32 °C for every 30 min with 15 s integration time via Synergy H1 luminometer 
for a week. The experiment was repeated three times with 3-technical replicates. To obtain the period values 
BioDare2 (biodare2.ed.ac.uk) was used47. Significant analysis was performed by using the unpaired t-test with 
Welch’s correction.

Establishment of CRY1‑knockout U2OS cell line.  CRY1 knockout U2OS cell line was generated 
using the LentiCRISPRv2 system48. In this study, we used the LentiCRISPRv2-CRY1-T1 construct which was 
described previously49. This construct was generated using the following oligos: CRY1 Sense: 5′ CAC​CGC​CTT​
CAG​G GCG​GGG​TTG​TCG​ 3′; CRY1 Antisense: 5′ AAA​CCG​ACA​ACC​CCG​CCC​TGA​AGG​C 3’.

The lentivirus preparation, transduction of U2OS cells and selection of the knockout candidates with puro-
mycin (at 0.5 mg/mL concentration) were performed as described previously49. CRY1 knockout candidates were 
screened with immunoblotting using anti-CRY1. To show the specificity of targeting CRY1, we also analyzed 
CRY2 protein level and actin level, which was probed as the loading control. The antibodies used for this were as 
follow: anti-CRY1 (A302-614A, Bethyl Labs Inc. Montgomery, TX., USA), anti-CRY2 (A302-615A, Bethyl Labs), 
and anti-Actin (CST- 4967S, Cell Signaling Technology, Boston, MA, USA). HRP-labeled anti-rabbit antibody 
(Thermo Fisher Scientific, Waltham, MA, USA cat: 31460) were used at 1:5000 dilution. Chemiluminescence 
was developed using WesternBright Sirius HRP substrate (Advansta, San Jose, CA, USA, cat no: K-12043-D20) 
and images were captured using the ChemiDoc XRS + system (Bio-Rad).

Real time bioluminescence of CRY1‑knockout cells.  40 × 104 Cry1-/- U2OS cells were seeded to 
35  mm clear plates. Then, cells were transduced with Bmal1-dLuc lentiviral particles as described in Doruk 
et al22. Next cells were reset with dexamethasone (0.1 μM final) for 2 h and then media replaced with biolumi-
nescence media described above with DMSO or molecules (final DMSO concentration 0.5%). Plates were sealed 
with vacuum grease and placed to luminometer LumiCycle (Actimetrics). Each plate was recorded continuously 
every 10 min for 70 s at 37 °C via photomultiplier tubes for a week. Raw luminescence data were analyzed using 
BioDare2 (biodare2.ed.ac.uk)50. For each molecule, the experiment was performed three times with duplicates 
(at least 6 plates per molecule) The unpaired t-test with Welch’s correction was used to evaluate the significance.

Classification.  PaDEL descriptors of molecules were produced using ChemDes web server51. The 1538 
descriptors were evaluated to describe the properties of molecules; details of molecular descriptors analyzed 
by PaDEL in ChemDes server were given in Table  1. The molecules both in the toxicity and period change 
datasets belong to two groups and we can categorize these datasets using binary classification, a machine learn-
ing approach to classify objects into two groups. The toxicity molecule set is composed of toxic and nontoxic 
molecules whereas in the period change dataset we have group of molecules that significantly change the period 

Table 1.   Features of PaDEL descriptors used in this study.

Type of descriptors Number of descriptors

E-state 568

Autocorrelation 346

Topological 266

Constitutional 120

Burden 96

Connectivity 56

Basak 42

Molecular property 15

Amino acid count 13

BCUT​ 6

Quantum chemical 6

Kappa 3

IP Molecular Learning 1
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and another that does not affect it. The class membership of each molecule is explained in Results and discussion 
section.

The number of the molecular descriptors (and so is the size of the feature space) 1538, is high relative to 
the number of molecules in both datasets that may cause overfitting. As such, a classifier with a good fit on the 
training set may produce poor results on the test dataset. To prevent overfitting, it is necessary to select the best 
set of molecular descriptors and eliminate the redundant features. As an initial step, the features with a single 
value for all the molecules are discarded since they do not provide any information for classification. For feature 
selection, we used Recursive Feature Elimination (RFE)52, which is originally proposed for selection of gene 
subset from patterns of gene expression data.

RFE necessitates an external estimator to weigh the features with respect to their importance. Starting from 
initial feature set, the estimator is trained on the current set to get the importance of each feature and the fea-
tures with the least importance are discarded. The process continues the reduced sets until a feature set with a 
predefined size is reached.

Decision Tree (DTC)53, Random Forest (RFC)54, Extra Trees (ETC)55, and Gradient Boosting56. Classifiers 
were used as classification methods, all of which can also work as an estimator for RFE. DTC assigns labels to 
samples on leaves of a decision tree by partitioning the feature space on each node and it is superior to other 
methods considering its interpretability. RFC is an ensemble classification method where multiple DTCs are 
trained on several subsets of the dataset and prediction is made based on the outcome of individual trees. Like 
RFC, ETC is based on training several DTCs. The main difference is that ETC uses the full learning set instead 
of its subsets. In addition, to find the best split at any node ETC uses randomly selected features. As in RFC, 
ETC does final prediction by majority voting of the individual trees. Gradient Boosting Classifier is a boosting 
algorithm that converts weak learners to stronger ones. Starting from a weak learner, decision trees, it adds new 
trees sequentially by minimizing a loss function using a gradient descent procedure. We used Extreme Gradient 
Boosting57 (XGBC) which is an efficient, and flexible implementation of Gradient Boosting. We implemented 
RFE and the classification methods using the Scikit-learn package58 and coded in Python.

Results and discussion
Structure‑based small molecule design.  CRYs are core clock proteins that participate in generat-
ing circadian rhythm by acting as strong transcriptional repressors of BMAL1/CLOCK transactivation in 
mammals4,59,60. Studies revealed that CRYs SNPs are associated with different types of diseases. For example, 
CRY1 variants have been associated with depression and mood disorders8,61,62, elevated blood pressure and 
hypertension62. Additionally, a CRY1 variant is linked with familial delayed sleep phase disorder and attention 
deficit/hyperactivity disorder18,63. We, therefore, selected mammalian CRY1 as a target for in silico screening 
to find molecules that regulate the period of the circadian rhythm. The CRY1 crystal structure (ID: 4K0R) 
is solved38. Comparison of various CRYs from different organisms shows that CRYs have variable length of 
extended C-terminal domains that range from 30 to 300 amino acids3,64,65 (Fig. 1). N-terminal domain has high 
homology to photolyases and is called the PHR domain. The PHR domain consists of two important regions, 

Figure 1.   Crystal structure of Cryptochrome 1(CRY1). There are two functionally important pockets, 
called primary and secondary pockets. Regions in primary and secondary pockets on CRY1 are shown in red 
color.
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called the FAD-binding domain (primary pocket) and an α/β domain (secondary pocket) which are shown to 
be important for the interaction with the FBXL3 and the CLOCK PAS B domain, respectively66. Therefore, the 
FAD-binding and secondary pockets were selected as targets which are shown to be important for regulating 
repressor activity of the CRYs67,68 (Fig. 1).

To bring CRY1 structure (PDB ID: 4K0R) near physiological conditions it was minimized and gradually 
heated to 3100 K. Then 10 ns MD simulation was run to obtain structure for the molecular docking simulations. 
To monitor the convergence of the simulation root mean square deviation (RMSD) of backbone atoms (C, N, 
Cα) of amino acid residues were analyzed throughout the simulation (Fig. S1).

We initiated in silico screening using a commercially available small molecule library (which contains ~ 8 mil-
lion molecules). Since docking pockets are large enough to accommodate relatively large molecules, we filtered 
the library to eliminate irrelevant molecules as described in the material-method section. Thus, nearly ~ 1 million 
molecules were docked to primary and secondary pockets of CRY1 by using AutodockVina. Then, molecules 
were ranked based on their Vina binding energies. Additionally, Pan Assay INterference compoundS (PAINS) 
PAINS-Remover69 was used to eliminate possible false-positive results. We tested 139 molecules designed for 
the primary packet of the CRY1 based on their availability. Similarly, 32 molecules designed for the secondary 
packet of the CRY1 were also tested for toxicity (Table S1).

Toxicity of molecules.  The toxicity studies were conducted using the human osteosarcoma (U2OS) cell 
line, which was also employed in the circadian bioluminescence assay. We initially tested the toxicity of the 
171 compounds using an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide)-based assay 
at 20  µM and determined that 48 of them were non-toxic (Fig.  2). The remaining 123 molecules that show 
toxic effects at 20 µM were further evaluated at 10 µM. Results indicated that 26 molecules were not toxic at 
10 µM. Finally, the other 97 molecules were tested at 2.5 µM and found that 41 molecules were non-toxic at this 
concentration (Fig. 2). The rest of 56 molecules with relative cell viability < 85% at 2.5 µM were labeled as toxic 
and, therefore, eliminated from further characterization. As a control, cells treated with 5% DMSO known to 
be toxic. In summary, of 171 tested molecules, 56 were toxic to U2OS cell lines whereas the 115 molecules were 
evaluated as non-toxic molecules at different concentrations. Structures of all molecules were provided in the 
supplementary data (Fig. S2).

Figure 2.   Non-toxic dosages of molecules determined by MTT toxicity assay. The cell viability was measured in 
cells treated with different concentrations of molecules. A dose of a molecule that allowed > 90% of cell survival 
evaluated as non-toxic dose. (Data represent the mean ± SEM n = 3). Cells were seeded 96-well plate and grown 
for 48 h. Then, cells were treated with molecules with indicated concentrations or solvent (DMSO) as control 
(final volume of DMSO is 0.5%). After 48 h of treatment, medium was replaced with DMEM: MTT reagent mix 
and incubated for 4 h. Finally, formazan salts dissolved in ethanol: DMSO mix and absorbance values of each 
well were measured at 570 nm using Synergy H1 (BioTek). The viability of DMSO-treated cells was normalized 
to 100% and the relative viability of cells treated with molecules was reported. A group of cells treated with 5% 
DMSO, known as toxic to cells, used as a positive control.
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Classification of molecules based on toxicity.  The toxicity data set is composed of 171 molecules with 
1538 molecular descriptors. 334 features repeating the same value for all molecules were discarded. The remain-
ing 1203 features were utilized to obtain the best feature set by Recursive Feature Elimination (RFE). Since RFE 
method52 and so the selected feature set is dependent on the estimator used, Decision Tree Classifier (DTC)53, 
Random Forest Classifier (RFC)54, Extra Trees Classifier (ETC)55, and Gradient Boosting (XGBC)56 were tested 
as the external estimators. To search for the promising regions in the space of the selected features, we generated 
feature sets with cardinality ranging from 2 to 20 in increments of 1 for each of these classifiers. To evaluate the 
potency of the selected features and compare the classifiers based on their prediction accuracy, 10-Fold cross-
validation (CV) were run on all the generated sets and replicated 100 times.

The toxic and non-toxic groups of molecules are not evenly distributed. The 33% of all molecules are toxic and 
the rest, 67%, is non-toxic. To cope with the unbalanced groups, we used weights associated with each class which 
are inversely proportional to the class sizes. The weights corresponding to toxic and non-toxic molecules, 1.53 
and 0.74 are calculated by wT = n/(2*nT), wNT = n/(2*nNT), respectively, where n is the total number of molecules, 
nT and nNT are the number of toxic and non-toxic molecules in the dataset.

To optimize the performance in discriminating between toxic and non-toxic molecules, we tuned the hyper-
parameters of each classifier. We did a grid search within the space of all combinations of a selected set of values 
of parameters and optimized over 10-Fold CV. The parameters of DTC and their corresponding values evaluated 
in grid search are, max_depth (The maximum depth of the tree): [1, 2, 3, … ,10, None], min_samples_splits 
(the minimum number of samples required to split an internal node): [2, 3, … ,10], min_samples_leafs (The 
minimum number of samples required to be at a leaf node): [1, 2, 3, … ,10], and max_features (the number of 
features to consider when looking for the best split): [1, 2, 3, … , num_features]. RFE and ETC parameters and 
their alternative values are max_depth: [1, 2, 3, … ,6, None], min_samples_splits: [2–5], min_samples_leafs: 
[1–5], max_features: [1, 2, 3, … , sqrt(num_features)], and n_estimators (The number of trees in the forest): 
[100, 200]. Note that the first four parameters of RFC and ETC are common with DTC. However, we use a 
smaller space of values due to the computational complexity of RFC and ETC. The set of parameters of XGBC 
and their set of levels to optimize are learning_rate (step size shrinkage used in update to prevents overfitting): 
[0.01, 0.1], max_depth: [3, 5, 7, 10], min_child_weight (minimum sum of instance weight needed in a child): 
[1, 3,5], subsample (subsample ratio of the training instances): [0.5, 0.7], colsample_bytree (subsample ratio of 
columns when constructing each tree): [0.5, 0.7], and n_estimators: [100, 200]. We used gbtree as the booster of 
XGBC which employs tree-based models.

To search for the promising regions in the space of the selected features, we generated feature sets with cardi-
nality ranging from 2 to 20 in increments of 1 for each of the classifiers. To evaluate the potency of the selected 
features and compare the classifiers based on their prediction accuracy, 10-Fold cross-validation (CV) were run 
on all the generated sets and replicated 100 times. The grid search for parameter tuning is made for each feature 
set independently and CV repetitions are implemented based on tuned hyperparameters.

The average accuracies of classifications with 100 replications on generated feature sets are given in Table 2. 
The rows represent the number of features selected and the mean accuracies for the generated feature sets. The 
classifiers used for 10-Fold CV are placed in columns. The maximum average accuracies for each of the classifiers 
are marked in bold numbers. Our analyses show that DTC attained the highest mean accuracy of 78.77% for 19 
feature set and is by far superior to the other classifiers studied in terms of prediction power. RFC follows DTC 
with the highest mean accuracy 72.99% for a set having 9 features, while ETC and XGBC are inferior, resulting 
in 71.36% and 71.17% maximum accuracies with 20 and 17 features, respectively. The maximum and standard 
deviation of 100 CV accuracies for each feature set and classifier pair are presented in Tables S2 and S3, respec-
tively. In line with the mean accuracy comparison, DTC attained the best with 84.80% maximum accuracy on a 
set with 19 features. RFC and XGBC reached the highest score of 77.78% while ETC stayed at 76.02% level. The 
standard deviation of DTC values is greater than 2 except for one feature set and is higher compared to the other 
classifiers (Table S3). However, this high variation in DTC results is compensated by higher mean accuracies. 
The lower variation in RFC, ETC and XGBC results, mostly less than 2, does not pose an advantage due to their 
lower mean accuracies.

The feature set with cardinality 14 results in a mean accuracy of 78.49% by DTC and it is very close to the 
highest score of 78.77% for 19 features. We concluded that the additional 5 features do not provide significant 
improvement in the prediction power of DTC and we continued our study with 14 features. Tuning Hyperpa-
rameters of DTC by grid search for 14 features resulted in the optimized values: max_depth = None, max_fea-
tures = 13, min_samples_leaf ’ = 1, min_samples_split = 5.

The RFE method iteratively prunes the least important features to get the set with preferred cardinality. How-
ever, the generated set is not guaranteed to be optimal. To determine the most essential features, we iteratively 
pruned the features in a similar approach with RFE in the selected 14 features. At each iteration, we did 100 CV 
repetitions on the reduced sets obtained by dropping every feature one at a time. The feature that provides the 
highest mean accuracy among the reduced sets was pruned. Our analysis for the reduced sets together with the 
pruned molecular descriptor showed that removing the descriptor ATSC8v to get 13 features increased the mean 
accuracy from 78.49 to 79.63% (Table 3). Further reduction in the size of the feature set decreased the mean 
accuracies. This is probably due to excluding the informative descriptors. We concluded that 13 features are the 
best descriptive set among 1203 descriptors with DTC to classify the toxicity data. Note that since there is no 
max_depth limit for 14 features DTC parameters, at each pruning step we additionally tuned the max_depth 
parameter to get the best max_depth level of 10.

The selected 13 molecular descriptors are: “MDEC-23, MATS2v, ATSC8s, VE3_Dt, CrippenMR, SpMax7_
Bhe, SpMin1_Bhs, C1SP2, GATS8e, GATS8s, SpMax5_Bhv, VE3_Dzi, VPC-4.” (Table 4). Finally, 10,000 CV 
repetitions were run to get the maximum and mean accuracies and the standard deviation of accuracies i.e. 



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18510  | https://doi.org/10.1038/s41598-021-97962-5

www.nature.com/scientificreports/

Table 2.   Toxicity dataset, mean accuracy of 10-Fold CV with 100 replications for feature sets with cardinality 
ranging from 2 to 20. DTC, RFC, ETC, and XGBC trained and tested on feature sets with cardinality between 
2 and 20.

Features

10 Fold CV—accuracy (%)

DTC RFC ETC XGBC

2 60.22 68.63 70.32 65.06

3 59.20 68.68 70.40 67.64

4 60.39 71.97 68.82 68.10

5 71.93 69.47 69.88 68.88

6 69.87 71.18 67.99 68.67

7 71.73 72.70 68.12 68.20

8 72.81 72.78 69.16 67.37

9 75.87 72.99 68.16 68.32

10 75.65 72.68 70.21 67.92

11 76.75 71.71 68.60 70.18

12 75.33 71.43 68.83 70.16

13 76.46 72.36 68.57 68.87

14 78.49 72.54 68.23 68.63

15 77.22 70.76 69.67 69.08

16 77.21 72.41 68.73 71.16

17 75.83 72.81 68.77 71.17

18 78.75 72.37 69.49 71.05

19 78.77 70.03 70.32 70.11

20 78.02 70.73 71.36 70.73

Table 3.   Toxicity Dataset, maximum, mean, and standard deviation of 10-Fold CV accuracies with 100 
repetitions. DTC applied to reduced feature sets obtained by removal of a single feature at a time.

Features Removed Max Mean Std. Dev

14 - 83.04 78.49 2.36

13 ATSC8v 84.21 79.63 2.01

12 VE3_Dt 84.21 79.41 2.50

11 SpMin1_Bhs 82.46 78.90 1.77

10 SpMax5_Bhv 83.63 78.95 1.86

9 GATS8e 83.04 77.82 2.17

Table 4.   Name, type, and description of selected 13 features determining the toxicity of a molecule.

Descriptor name Type Description

MDEC-23 MDEDescriptor Molecular distance edge between all secondary and tertiary carbons

MATS2v Moran Autocorrelation Descriptor Moran autocorrelation—lag 2/weighted by van der Waals volumes

ATSC8s Centered Broto-Moreau Autocorrelation Descriptor Centered Broto-Moreau autocorrelation—lag 8/weighted by I-state

VE3_Dt Detour Matrix Descriptor Logarithmic coefficient sum of the last eigenvector from detour matrix

CrippenMR Crippen Descriptor Crippen’s molar refractivity

SpMax7_Bhe Burden Modified Eigenvalues Descriptor Largest absolute eigenvalue of Burden modified matrix—n 7/weighted by relative Sanderson electronega-
tivities

SpMin1_Bhs Burden Modified Eigenvalues Descriptor Smallest absolute eigenvalue of Burden modified matrix—n 1/weighted by relative I-state

C1SP2 Carbon Types Descriptor Doubly bound carbon bound to one other carbon

GATS8e Geary Autocorrelation Descriptor Geary autocorrelation—lag 8/weighted by Sanderson electronegativities

SpMax5_Bhv Burden Modified Eigenvalues Descriptor Largest absolute eigenvalue of Burden modified matrix—n 5/weighted by relative van der Waals volumes

VE3_Dzi Barysz Matrix Descriptor Logarithmic coefficient sum of the last eigenvector from Barysz matrix/weighted by first ionization 
potential

VPC-4 ChiPath Cluster Descriptor Valence path cluster, order 4
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86.55, 79.53, 2.18, respectively. The accuracies displayed an approximately normal distribution for the histogram 
of accuracies and probability density function of the fitted normal distribution (Fig. 3A). The plot of DTC with 
dmax 10 trained on 13 features showed that among 16 leaf nodes, 11 (orange color) conclude that a new molecule 
is nontoxic, and the rest 5 (blue color) results in the decision that it is toxic (Fig. 3B).

Circadian bioluminescence assay.  U2OS cell is a commonly used cell line in the circadian rhythm field 
due to its robust rhythm22,25,46,71. Any agents such as small interfering RNA (siRNA) and chemicals or gene 
knockout (KO) affecting the stability or activity of clock proteins change the parameters (period, amplitude, 
and phase) of the circadian rhythm25,72. We analyzed the effect of non-toxic molecules on the period length of 
circadian rhythm in U2OS cells stably expressing destabilized firefly Luciferase (dluc) under the control of the 
Bmal1 promotor (U2OS Bmal1-dluc).

Figure 3.   (A) Toxicity Dataset, histogram and fitted normal probability density function of the accuracies for 
10,000 replications of DTC (Max. Depth, 10) applied to final 13 molecular descriptors. (B) Toxicity Dataset, 
DTC plot70, which is generated by graphviz.org, with maximum depth 10 trained on final 13 features.
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Since the primary and secondary pockets of CRY1 are critical to interact with different proteins e.g. CLOCK 
and FBXL3, respectively, molecules designed for these two pockets might have differential impacts on the circa-
dian rhythm. Thus, we focused only on the effect of 85 non-toxic molecules designed for the primary pocket of 
CRY1. U2OS Bmal1-dLuc cells treated with these molecules and their effect on circadian period length was ana-
lyzed by BioDare2 (biodare2.ed.ac.uk)50. Analysis revealed that 21 molecules significantly lengthen the period of 
circadian rhythm (Fig. S3). One molecule, N8, shortened the period and was excluded from further classification 
studies. The representative figure for period lengthener molecules is shown in Fig. 4A. Circadian rhythm results 
of all period lengtheners were given in Fig. S3. All period values were provided in Table S4. To verify the CRY1 
dependency of molecules, we generated U2OS CRY1-/- Bmal1-dLuc cells by utilizing CRISPR/Cas9 technology 
(Fig. S4). Knocking out the CRY1 in this cell line resulted in a shorter period (indicated with red line) compared 
to wild-type controls (indicated with black line) as in agreement with previously published data73 (Fig. 4B). 
Notably, when U2OS CRY1-/-Bmal1-dLuc cells were treated with potent molecules A7, K5, K14, M17, M35, 
M47, M49, M54, M78, and N15 no change was observed in the period length of the circadian rhythm (Fig. 4B). 
We, then, performed a classification study to determine the molecular characteristics leading to period change.

Next, we analyzed the stability of the interaction between molecules and CRY1 using the MD simulations. 
The seven of the most potent (A7, M17, M35, M47, M49, M54, and M78) molecules in complex with CRY1 
were simulated. Parameters for molecules were generated using CHARMM-GUI server. The CRY1-molecule 
complexes, obtained from docking analysis, were simulated for 20 ns. The initial docking position of molecules 
and nearby amino acid residues on CRY1 were shown in (Fig. 5A). We identified the nature of interactions 
between CRY1 and molecules as followings. Ring structures in molecules generated pi-type (Pi-cation, Pi-alkyl, 
Pi-Pi stacked or T-shaped) interactions with at least one of either Arg-293, His-355 and Trp-399 of CRY1. In 
addition, all molecules interacted with Leu-255 and Ile-392 of the CRY1 through van der Waals forces. To 

Figure 4.   The effect of the molecules on circadian rhythm. (A) 5 × 104 U2OS Bmal1-dLuc cells were seeded 
to an opaque 96-well plate. Next day cells were synchronized by dexamethasone for 2 h. Then the medium 
was replaced with luminescence recording medium having molecules or DMSO. Bioluminescence readings 
were recorded for a week using Synergy H1 (BioTek). Period data was calculated using Biodare2 web-server 
(biodare2.ed.ac.uk) (all results were given in Fig. S3). To determine molecules that are changing the period of 
the rhythm significantly, the period length of molecule-treated cells was compared to that of DMSO control 
using unpaired t-test with Welch’s correction (****p < 0.0001 ***p = 0.001 **p < 0.01, *p < 0.05, n = 3). Each 
biological replicate was the average of the 3 technical replicates. (B) 1 × 105 CRY1-/-U2OS transduced with 
Bmal1-dLuc reporter. WT represents U2OS Bmal1-dLuc. Bioluminescence readings were recorded for a week 
using LumiCycle (Actimetrics, USA). Period data was calculated using Biodare2 web-server (biodare2.ed.ac.
uk). Unpaired t-test with Welch’s correction was used for significant analysis (*p < 0.05, n = 3). Each biological 
replicate was the average of the two technical replicates.
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evaluate the persistence of these interactions we generated a contact map of molecules with nearby amino acids 
through 20 ns MD simulations. RMSD values of backbone atoms of proteins showed that simulations reached 
the equilibrium (Fig. S5). Contact maps showed that these interactions were maintained during the simulations 
(Fig. 5B). Visual inspection showed that molecules did not cause any conformational changes and their interac-
tions were maintained throughout the simulation. A list of highly interacting amino acids with each molecule 
was given in Table 5. In addition, amino acid residues, which formed hydrogen bonds, were determined from 
the initial docking position of molecules (Table 5) and the persistence of these interactions was confirmed from 
interaction maps (Fig. 5B).

Classification of period lengthening molecules.  Factors determining the period length in the cir-
cadian rhythm are quite complex. For example, the deletion of analogous Cry1 and Cry2 genes in mice causes 
short and long period phenotypes, respectively74. CRY binding small molecules discovered by high-throughput 
screening were reported to stabilize the CRY1. Interestingly, these molecules caused differential circadian phe-
notype in treated cells e.g. shorter or longer period length25,27. Thus, we focused only on the period lengthening 
molecules. Previously reported 6 molecules binding to CRY1 and lengthened the period of circadian rhythm 
(KL001, GO058, GO061, GO152, GO214, GO216)25,27 were included in the classification analysis, GO203 which 
does not change the rhythm included as no-changer. We started the classification with 90 molecules of which 
27 are period lengthening, 63 are no-changers. 1538 molecular descriptors were generated for all molecules. 

Figure 5.   Binding mode of molecules on CRY1 and analysis of molecular dynamic simulations of CRY1-
molecule complexes. (A) Docked conformation of molecules was analyzed and 2D interaction map was 
generated using Discovery Studio Visualizer. Type of interactions was given in color-coded format. (B) 
Interaction maps of molecules with CRY1 through 20 ns MD simulation were generated using VMD timeline 
applet. It has been evaluated as interaction if molecule and amino acid residues get 5 Å or closer and shown with 
a black bar.
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However, 360 of them have the same value for all molecules and were discarded. The remaining 1177 features 
were used to train the dataset.

We followed a similar approach with the toxicity dataset for the classification of the set of period-lengthening 
molecules. The period dataset is also unbalanced as in toxicity since 30% of the molecules are period changers 
and the rest 70% are no-changer molecules. To deal with the possible bias, we set the weights of the period-
lengthening and no-changer molecules as 1.67 and 0.71, respectively. We generated feature sets with cardinalities 
between 2 and 20 from the period dataset by RFE using DTC, RFC, ETC and XGBC as external estimators. Next, 
we tuned the parameters of the given classifiers on each of the feature sets and did 100 CV with the optimized 
parameters.

Mean accuracy levels for each feature set and classifier pair are presented in Table 6. All of the classifiers 
achieved mean accuracies greater than 80% for multiple numbers of feature sets and the highest mean accuracies 
for each classifier are marked in bold. RFC and XGBC are the best of all with highest mean accuracies, 83.62% 
for 16 features and 83.69% for 15 features. Since XGBC provided slightly higher mean accuracy than RFC with 
1 less feature, we selected XGBC as the most promising classifier for the period dataset.

The maximum and standard deviations of 100 CV accuracies for each feature set and classifier pair are given 
in Tables S5 and S6 respectively. Among all, XGBC provided the maximum accuracy of 90% again with the 
15 features. XGBC Parameters tuned for 15 features are such that, colsample_bytree = 0.5, learning_rate = 0.1, 
max_depth = 3, min_child_weight = 1, n_estimators = 100, and subsample = 0.7.

As performed in the toxicity dataset, we iteratively pruned the features in the selected 15 features to eliminate 
the redundant ones, this time using XGBC with the tuned hyperparameters. In Table 7 maximum, mean and 
standard deviation of accuracies of 100 CV applied on reduced feature sets are presented. Reducing the set from 

Table 5.   Highly interacting and hydrogen bond generating amino acid residues of CRY1 with molecules.

Molecules Interacting amino acids Hydrogen-bond forming amino acids

A7 Leu-255, Gln-289, Asp-389, Ile-392, Ser-396, Trp-399 Arg-293, His-359

M17 Leu-255, Gln-289, Leu290, Trp292, Arg-293, Ile-392 Arg-293

M35 Leu-255, Gln-289, Trp-292, Arg-293, Ile-392, Trp-399 Arg-293, His-359

M47 Leu-255, Gln-289, Leu-290, Arg-293, His-355, His-359 Arg-293, His-359

M49 Leu-255, Gln-289, Arg-293, His-355, Ile-392, Trp-399 Arg-293, Gln-289, His-355

M54 Leu-255, Gln-289, Trp-290, Arg-293, Ile-392, Trp-399 His-359, Ser-395

M78 Leu-255, Gln-289, Trp-292, Arg-293, Ile-392, Trp-399 Ser-396

Table 6.   Period lengthening dataset, mean accuracy of 10-Fold CV with 100 repetitions. DTC, RFC, ETC, and 
XGBC trained and tested on feature sets with cardinality between 2 and 20.

Features

10 Fold CV—accuracy (%)

DTC RFC ETC XGBC

2 74.63 75.78 69.19 63.17

3 70.00 74.48 76.78 70.42

4 70.30 82.17 78.24 71.74

5 79.07 78.22 78.29 75.31

6 80.92 79.57 79.68 73.66

7 79.87 80.04 79.82 74.92

8 82.18 79.14 81.77 75.37

9 82.10 82.72 81.91 78.88

10 80.82 81.30 78.11 80.50

11 81.93 80.83 80.24 80.43

12 81.23 81.13 79.89 81.63

13 82.13 80.93 77.34 83.28

14 78.52 81.02 77.67 82.69

15 80.66 81.16 75.08 83.69

16 78.70 83.62 77.49 82.59

17 75.21 82.20 79.61 80.94

18 78.32 82.74 81.60 81.76

19 76.88 79.60 78.34 82.97

20 77.41 79.62 81.16 82.53
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15 to 10 features increased the mean accuracy from 83.69 to 86.94%. Dropping further features reduced the mean 
accuracy since all the features in 10 features are informative.

We concluded that XGBC with the tuned parameters coupled with the reduced set with 10 features is the 
best classifier for the period changer dataset. We did a final 10,000 repetition of 10-Fold CV with XGBC on 10 
features to get the maximum and mean accuracies of 93.33%, and 86.56% respectively. The histogram and fitted 
normal probability density function of the accuracies for 10,000 replications are presented in Fig. 6. The selected 
final 10 features includes: “ATSC8c, MATS1e, minsCH3, MATS4e, MATS4s, ATSC7i, SpMin4_Bhp, MLFER_S, 
ATSC4p, SpMax2_Bhm” (Table 8).

Conclusions
Drug discovery is a very expensive and time-consuming process posing several daunting challenges. Compared to 
the classical high-throughput approach to computer-assisted drug discovery, employing virtual screening (VS) is 
a promising approach to reduce the cost of the initial drug discovery. VS allows identifying hit compounds from 
large databases of drug-like molecules much faster and cheaper than traditional approaches. VS utilizes com-
prehensive evaluation of ADMET parameters by pharmacophore modeling75 and quantitative structure–activity 
relationship (QSAR) analysis76. In addition to these, toxicity prediction is becoming a more significant part of 
current computer-assisted drug development, especially when libraries contain tens of millions of untested com-
pounds. As a result, quick and inexpensive computational algorithms are frequently used to eliminate potentially 
toxic compounds and reduce the number of experimental tests required. Here we identified small molecules that 
bind functionally important regions of a core clock protein CRY1. First, of tested 171 molecules, 115 molecules 
are nontoxic while 56 molecules are toxic. Then we performed machine learning methods to classify toxic and 
nontoxic molecules. DTC identified 13 features that can predict the toxicity with accuracy of about 80%. Second, 
21 molecules were identified as period lengthener among 85 molecules. Furthermore, machine learning approach 
using XGBC determined 10 molecular descriptors that can predict period lengthener molecules about 87% 
accuracy. These descriptors can be implemented in future VS studies on CRY1 to predict the toxicity and period 
lengthener effect of molecules from libraries containing several hundred million compounds.

Table 7.   Period lengthening dataset, maximum, mean, and standard deviation of 10-Fold CV accuracies with 
100 repetitions. XGBC applied to reduced feature sets obtained by removal of a single feature at a time.

Features Removed Max Mean Std. Dev

15 – 90.00 83.69 2.41

14 ATS3m 90.00 85.11 2.11

13 AATSC4m 90.00 86.11 2.07

12 MATS5m 91.11 86.17 2.52

11 minHBint2 91.11 86.48 2.27

10 AATS4p 92.22 86.94 2.18

9 minsCH3 91.11 86.82 2.21

8 ATSC4p 90.00 85.47 2.16

7 MLFER_S 88.89 84.74 2.49

Figure 6.   Period Change Dataset, histogram, and fitted normal probability density function of the accuracies 
for 10,000 replications of XGBC applied to final 10 molecular descriptors.
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